
Supplementary Materials:

R code and RMarkdown output are available on GitHub (http://gsvidaurre/simpler-signatures-

post-invasion). Pre-processed data will be deposited in Dryad. Included below are 

supplementary methods, tables, and figures.

Supplementary Methods:

1. Contact call recording and pre-processing

1.1 Recording calls and obtaining nest estimates

Contact calls were recorded similarly across ranges and years. Calls were generally obtained 

from unmarked parakeets flying in or out of clusters of nests, as well as perched individuals, 

as in [1,2]. With the exception of a subset of individuals, we obtained a single call per 

unmarked bird. As birds were unmarked, some calls may represent potential repeated 

sampling of the same individuals. Recordings were made using recording rigs, sampling rates

and bit depths detailed in the main manuscript. Recordings were made onto a single channel. 

The 2004 calls provided as cuts of original recordings were previously high-pass filtered at 

600Hz to remove low frequency noise in the background [1].

Numbers of nests were estimated at some native range recording sites in 2017, and 

some invasive range sites in 2011 and 2019 (Supplementary Table 1) by counting the number

of nests visible at each site. Numbers of nests reported here should be considered estimates 

because other nests in the vicinity may have been missed, it was not always possible to 

evaluate if nests were active, and we could not always count the number of chambers, nor the

number of individuals residing in each chamber. Overall, we observed greater numbers of 

parakeets and population continuity in the native range compared to invasive range sites in 

the U.S. (Smith-Vidaurre, pers. obs.). Although such native range numbers and continuity was
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not fully captured by nest estimates reported here, we used estimated numbers of nests as a 

rough proxy of local social density per range.

The effect size of range on nest estimates was calculated as Cohen’s d with the effsize

package version 0.8.0 with 95% CI : -0.75 (-0.06, -1.44). We asked whether nest estimates 

were significantly different between ranges with a Mann-Whitney-Wilcoxon test, as data were 

not normally distributed. To meet the assumption of independent samples, 4 invasive range 

site-years were dropped that represented sampling of the same sites over two years (sites 

AIRP, ELEM, INTR, MART in 2011 were dropped). This yielded 33 nest estimates for unique 

sites across ranges, with similar means and standard error for the invasive range as for the 

full dataset (reduced dataset: 5.31 ± 1.09, full dataset: 5.94 ± 1.23). The Mann-Whitney-

Wilcoxon test was carried out with the package coin version 1.3-1 as a two-sided test. The 

distributions of nest estimates were not equal between ranges. The difference in location 

between ranges and 95% CI was 14 (7, 26), with Z = 4.21 and p = 0.0000029. The positive 

sign of this shift was consistent with greater nest estimates in the native range. 

1.2 Call selection in Raven and pre-processing calls in R

Contact calls were manually selected in Raven version 1.5 [3] from 2017 native range 

recordings in previous work [4]. Calls were selected from 2011, 2018, and 2019 invasive 

range recordings with Raven 1.4 [3]. Previously published 2004 contact calls were provided 

as cuts of original recordings [1]. Unless specified otherwise, call pre-processing was 

performed in R version 3.4.4 [5] with the warbleR package version 1.1.18 [2]. Invasive range 

calls, including 2004 calls, were taken through a similar pre-processing workflow as in [4]. We

made catalogs of invasive range calls and visually checked call quality. Calls were assigned a

score of low, medium or high visual quality. We also checked for visible patterns of amplitude 

saturation, overlapping signals in the background, and visible truncation of calls (2004 cuts), 
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and added this metadata to a spreadsheet for manually detected calls. We used this 

metadata to retain high quality calls. Calls with low quality scores, visible amplitude 

saturation, overlapping signals, or signal to noise ratio less than 7 were dropped, as in [4]. 

Temporal coordinates of calls were tailored by the same observer (GSV, who tailored 

native range temporal coordinates in previous work) to return consistent start and end times 

across the native and invasive range datasets. Spectrograms were generated for individual 

calls to visually validate call quality and consistency of temporal coordinates, using the 

following settings: Hanning window, window length of 398, window overlap of 90. Unless 

otherwise specified, we used the same settings for all measurements below relying on Fourier

transformations (e.g. spectrographic cross-correlation), in addition to a bandpass filter of 0.5 

to 9kHz. Native and invasive range selection tables were combined, and filtered to retain sites

with 5 calls or more remaining after pre-processing (Supplementary Tables 2, 3), and 

repeatedly sampled individuals with 4 or more calls (Supplementary Table 4).

We dropped duplicate recording sessions when a site was re-recorded on different 

days. However, some sites in the current dataset were represented by calls recorded on 

different days. This was due to merging sites that represented very fine-scale geographic 

sampling, which had been used for previous comparisons of geographic variation in the native

range [4] (Supplementary Table 2). Also, for an independent analysis of hierarchical mapping 

patterns, we included 1 call per repeatedly sampled individual at the site scale, which led to 

more than one recording date for some sites with known repeatedly sampled individuals. The 

full dataset contained 1596 calls across social scales (individual scale = repeatedly sampled 

individuals, site scale = 1 call per “unique” individual) and ranges. However, for supervised 

machine learning analyses below, we dropped calls of repeatedly sampled individuals 

included at the site scale to avoid including duplicated calls, yielding a total of 1561 calls. See 
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the script “SimplerSignatures_AdditionalMaterials_01_SummaryStatistics.Rmd” and the 

RMarkdown output provided on GitHub for more information.

2. Analyses of acoustic structure

2.1 Supervised machine learning classification

2.1.1 Obtaining predictors for machine learning

We measured a large set of acoustic measurements, including a standard set of 27 acoustic 

measurements and Mel-frequency cepstral coefficients (MFCC). Acoustic similarity of calls 

was measured using spectrographic cross-correlation (SPCC), dynamic time warping (DTW) 

on spectral entropy and dominant frequency time series estimated at 100 timepoints per call, 

and multivariate DTW (multiDTW) on spectral entropy and dominant frequency time series. 

These acoustic and similarity measurements were calculated with warbleR version 1.1.18 in 

R version 3.4.4. Acoustic measurements were converted to features for supervised machine 

learning using principal components analysis (PCA), and similarity measurements were 

converted to features via multidimensional scaling (MDS). Converting raw measurements to 

features yielded new predictors that represented variation across calls while reducing 

collinearity present among the original raw measurements. 

We filtered out calls from the site scale that represented repeatedly sampled 

individuals included for a separate analysis of hierarchical mapping, yielding 1561 calls for 

supervised machine learning analyses (see section 1.2). We combined features extracted 

with MDS and PCA (see above) with 27 standard acoustic parameters, yielding 217 

predictors. This set of predictors was filtered for high collinearity using Pearson’s correlation 

(predictors with Pearson’s r less than or equal to 0.75 were retained). After dropping highly 
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collinear predictors, we obtained a final set of 203 predictors for machine learning, which 

included 15 acoustic measurements (see below), and 188 features derived by MDS and PCA.

The 15 acoustic measurements were: start and end dominant frequency, minimum and 

maximum dominant frequency, dominant frequency range and slope, modulation index 

(based on dominant frequency), peak frequency, mean peak frequency, frequency 

interquartile range, third frequency quartile, kurtosis, spectral entropy, duration, and first 

temporal quartile. These acoustic measurements were used as predictors so as to directly 

evaluate their importance for classification of calls back to ranges, as it is easier to attribute 

structural differentiation to original measurements (such as call duration) rather than features 

representing less interpretable combinations of original measurements (e.g. principal 

components).

2.1.2 Splitting calls for machine learning

We split the dataset of 1561 calls into training, validation, and prediction datasets in R version

3.6.3. All subsequent analyses were performed with this version of R. Calls per site were 

randomly split depending on whether or not a site was used for spatial or temporal 

comparisons of acoustic structure. For native range sites and each invasive range site that 

did not represent temporal sampling, we randomly sampled ½ of total calls for training. 

Among the remaining calls per site, we randomly sampled 1/3 for validation, and set aside the

rest (2/3) for prediction. For invasive range sites that did represent temporal sampling (e.g. 

the same site sampled in different years, or sites representing a city sampled over years, only 

Austin, TX and New Orleans, LA sites), we randomly sampled 20 calls for prediction. If one of 

these sites had 20 calls or less, we took all calls for prediction. For temporally sampled sites 

with more than 20 calls, we randomly chose ½ of the remaining calls for training, and set 

aside the other half for validation. 
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This overall sampling scheme yielded 676 calls for training, 337 calls for validation and 

548 calls for prediction, while sampling as evenly as possible from different spatial regions 

and years in the invasive range dataset. Training, validation, and prediction datasets 

contained 43%, 22%, and 35%, respectively, of all calls used for supervised machine 

learning. The prediction dataset contained invasive range calls from all areas sampled in the 

U.S. for our direct comparison between ranges, and also contained invasive range calls 

sampled over time in Austin and New Orleans to assess the possibility of structural change in 

invasive range calls over time.

2.1.3 Model training, validation, and prediction

Supervised stochastic gradient boosting and random forests models were built to classify 

calls back to either the native or invasive range. Models were trained and tuned with the 203 

predictors described above over 5 iterations of repeated 5-fold cross-validation using caret 

version 6.0-86, gbm version 2.1.5, and ranger version 0.12.1. The total number of trees, 

interaction depth (maximum depth of each tree, or the highest level of interactions permitted 

among predictors) and shrinkage parameter (learning rate of the model) were tuned for the 

gradient boosting model. The mtry parameter (the number of predictors randomly selected at 

each split) was tuned for the random forests model. After evaluating training performance, we 

visualized variable importance per model. Although the random forests model had slightly 

lower training classification accuracy, it exhibited more original acoustic measurements 

among the top 30 most important variables for classification back to ranges. As we wanted to 

use these acoustic measurements to more closely evaluate structural differences between 

ranges, we selected the random forests (RF) model for validation and prediction. This model 

yielded high validation accuracy, so we proceeded with prediction, and found that the model 

demonstrated high prediction accuracy back to ranges (Supplementary Table 5). 
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2.1.4 Finer-scale assessment of structural change

High classification accuracy during model training, validation, and prediction indicated high 

structural differentiation between ranges. These structural differences were visualized by 

reducing the RF proximity matrix to two dimensions with MDS. Density in acoustic space per 

range was obtained by applying a two-dimensional Gaussian kernel density estimator with 

bandwidth of 0.5 in each dimension to the MDS coordinates. Contours were drawn by splitting

density values into 10 bins, such that each contour represented 1/10th of the density values 

per range (Figure 1b). Finer-scale spatial and temporal structural changes were evaluated by 

assessing classification accuracy of calls set aside for spatial and temporal comparisons in 

the RF prediction dataset, using misclassification back to the native range as an indicator of 

structural change (e.g. invasive range calls becoming more native range-like). 

We expected that if invasive range populations grew in size over time, these 

populations should experience greater selection for more distinctive individual signatures, and

therefore, invasive range calls could become more structurally similar to native range calls 

over time. If so, we expected to see higher misclassification of invasive range calls over time, 

or in different sampling areas that may have exhibited larger population sizes but were not 

sampled over time. However, we found no clear changes in classification accuracy over 

regions or years in the invasive range, which indicated that structural differences identified 

between ranges largely held regardless of the year and region in which invasive populations 

were sampled (see code provided). We also validated misclassification of invasive range calls

and found that misclassification was not due to low signal to noise ratio (e.g. misclassified 

calls were not lower quality calls). Finally, structural changes in calls between ranges were 

assessed at a finer structural scale by assessing partial dependency of RF classification 

accuracy on the 15 standard acoustic measurements used among predictors. Partial 
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dependency plots showed little change in classification accuracy back to the invasive range, 

indicating that structural differences between ranges did not entirely map onto these 15 

standard acoustic measurements. See the script 

“SimplerSignatures_AdditionalMaterials_02_AcousticStructure_SupervisedML.Rmd” and the 

RMarkdown output provided on GitHub for more information.

2.2 Obtaining second harmonic frequency contours

2.2.1 Randomly selecting calls for three comparisons (between ranges, over time, among 

individuals)

The full dataset of 1596 calls was subsampled for frequency tracing, as we relied on manual 

tracing and this would have been prohibitively time-consuming to perform for the entire 

dataset. We randomly selected a subset of calls from the site scale dataset (e.g. not the 

dataset of known repeatedly sampled individuals) for a spatial comparison between the native

and invasive ranges, as well as calls for a temporal comparison within the invasive range. We

used temporal comparisons to account for the possibility of temporal change in acoustic 

structure, which could confound direct comparisons between ranges. 10 sites were randomly 

selected per range, and 4 calls randomly chosen per site. Overall, 80 calls were selected to 

evaluate frequency modulation patterns between ranges. These calls represented all 

sampling regions in the native range relatively evenly, although Texas was more heavily 

represented in the invasive range calls, as the full dataset contained more calls from this 

area. 

For temporal comparisons of frequency modulation, we chose 15 site-years from 

Austin and New Orleans that represented sampling over time. Austin sites were each 

sampled in two years (10 site-years total, sampled in either 2011 and 2019, 2004 and 2019, 
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or 2004 and 2011), while the same New Orleans sites were not sampled over different years, 

but together represented temporal sampling at the city scale (3 sites sampled in 2004, 2 sites 

sampled in 2011). We randomly selected 5 calls per each site-year, yielding a total of 75 

invasive range calls for temporal comparisons. 25 calls were selected for 2004 (Austin and 

New Orleans), 30 calls represented 2011 (Austin and New Orleans), and 20 calls were 

sampled for 2019 (Austin only).

We also randomly sampled 5 calls per repeatedly sampled individual per range, or took

all calls for repeatedly sampled individuals with 5 calls or less, yielding a total of 84 calls used 

for analyses of individual identity content (section 3.1.2). Our overall sampling scheme for 

frequency tracing yielded 239 calls total, but 6 calls were randomly sampled from 3 site-years 

for both the spatial and temporal comparisons (1 call from BALL-2004 in New Orleans, 1 call 

from INTR-2011 in Austin, and 4 calls from VALL-2004 in Austin), so we performed frequency 

tracing for 233 calls total.

2.2.2 Tracing second harmonic frequency contours

Frequency contours were obtained by estimating fundamental frequency as a time series at 

100 timepoints per call, and these contours were used to manually trace the second harmonic

per call with warbleR version 1.1.24 [2]. Unless otherwise specified, we used this version of 

warbleR for all subsequent analyses. We chose to trace the second harmonic because the 

fundamental frequency was not always clearly visible across calls. The subset of calls 

selected above for frequency tracing was randomly split in half to spread the manual tracing 

workload across two observers (GSV, VP). Tailored contours per observer were then 

combined, and a final round of tailoring was performed by one observer (GSV). Finally, 

spectrograms of calls with frequency contours were generated and inspected as a final check 

of tracing accuracy, and frequency contours were saved in extended selection table format.
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2.3 Frequency modulation analyses

2.3.1 Estimating peaks and troughs of frequency contours

To measure frequency modulation patterns, we dropped 5 points from the start and end of 

each contour to account for small gaps preceding or following calls, and some end points that 

fell underneath components of the graphical user interface used for tailoring. We then 

randomly selected 5 calls per range from the subset of calls with frequency contours and 

generated image files of the frequency contours. One observer (GSV) manually counted 

large, visible frequency peaks and troughs per call. This step was performed in order to 

inform our approach for estimating peaks and troughs (inverted peaks). Once we obtained the

number of visible peaks and troughs per call, we applied a general peak locating function to 

frequency contours of the randomly sampled set of 10 calls above, using pracma version 

2.2.9. This initial peak search was used to fine-tune a more customized peak and trough 

estimation routine across the 233 calls with frequency contours. 

From the preliminary peak search above, we obtained the maximum peak height 

identified in the subset of 10 calls, and used this to implement a threshold on minimum peak 

height in the customized function below. We also implemented smoothed spline interpolation 

of frequency contours, using the built-in R package stats version 3.6.3. Spline interpolation 

was performed with an exact cubic spline over 5 times the length of each frequency contour 

(e.g. 450 points), with means obtained for tied values. Cubic smoothing splines were applied 

to the interpolated points, and we optimized degrees of freedom, a parameter that controlled 

the degree of smoothing. Spline interpolation and smoothing helped flatten small peaks 

introduced by manual tailoring. pracma was used as above to estimate frequency peaks of 

the smoothed spline-interpolated points. Limitations were imposed on the peaks identified by 

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249



pracma: peaks could not be within 2 points of the end of the smoothed frequency contour, 

peaks had to exhibit heights greater than a minimum height threshold (obtained above) 

compared to preceding frequency points, and peaks had to be a minimum distance apart (to 

filter out multiple peaks identified when a single tall peak presented as a plateau). We 

estimated troughs by searching for peaks across the inverted smoothed contours with 

pracma. Once troughs were obtained, troughs were assigned to closest preceding peaks, and

we removed troughs that were not assigned to peaks. This routine returned peaks and 

troughs per call, as well as the slope per peak – trough pair (change in frequency/change in 

indices of smoothed contours), and image files for visual inspection of results.

We applied this customized function to the 233 calls with frequency contours, and 

visually inspected the peaks and troughs estimated per call to settle on final parameters for 

the function. Overall, the customized peak – trough estimation routine performed well when 

estimating large frequency peaks, and identifying troughs following each large peak. In a few 

cases, medium or small frequency peaks close to large peaks were not identified, and in other

cases, gradual increases in frequency were labeled as peaks (and sometimes were not 

assigned troughs). Missing peaks per call could lead to underestimation of frequency 

modulation measurements. However, we felt this would not bias our results because peaks 

were missed for only a few calls in the dataset, and when this did occur, only a single peak 

was missed per call. In addition, the peaks missed were of small/medium height, and not 

representative of large changes in frequency modulation. On the other hand, visual inspection

indicated that overestimation of frequency modulation was more of a problem (very small 

peaks or gradual rises in frequency identified as peaks). We addressed this concern by 1) 

removing peaks per call that were not matched to troughs, and 2) binning peak-trough slopes 

into 50 classes and removing peaks in the last two bins, which represented very small or 
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positive peak-trough slopes. After dropping 170 peaks in these two bins, we proceeded with 

frequency modulation measurements across the 233 calls.

2.3.2 Frequency modulation measurements

Frequency modulation patterns were assessed by obtaining three frequency modulation 

measurements: the total number of peaks, the modulation rate (number of peaks/call 

duration), and the maximum peak – trough slope (largest negative slope between a given 

peak and neighboring trough) per call. We compared means and standard errors for each 

frequency modulation measurement per range, as well as for the 15 standard acoustic 

parameters filtered for high collinearity that were previously used for machine learning 

(section 2.1.1), with the set of 80 subsampled calls as described above. The effect size of 

range was calculated as Cohen’s d on the 18 acoustic measurements, with pooled standard 

deviation and 95% CIs, using effsize version 0.8.0. We used Cohen’s rule of thumb to identify 

large effect sizes, such that absolute effect sizes greater than or equal to 0.8 were considered

large [6], and treated effect sizes with 95% CIs that did not cross zero as statistically 

significant (Supplementary Table 6). 

We accounted for the possibility of temporal change in acoustic structure for the 

invasive range by evaluating means and standard errors of the 5 acoustic measurements with

the largest effect sizes in the comparison above between ranges. Here we used the dataset 

of 75 calls selected for temporal comparisons. There was little change over time in these 5 

acoustic measurements, indicating that the structural differentiation we identified between 

ranges was consistent over sampling intervals in the U.S. that spanned 15 years 

(Supplementary Figure 1). See the script 

“SimplerSignatures_AdditionalMaterials_03_AcousticStructure_FrequencyModulation.Rmd” 

and the RMarkdown output provided on GitHub for more information.
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3. Assessing individual identity content

3.1 Validation analysis of individuals used to calculate Beecher’s statistic

We used Beecher’s statistic to calculate the amount of individual identity content in calls of 

repeatedly sampled individuals per range [7]. Here, we felt it was important to use equal 

numbers of individuals that represented similar patterns of variation in acoustic space per 

range. Previous work indicated that individuals at the same nesting site, as well as nesting 

sites separated by short geographic distances, are over-dispersed in acoustic space, but 

individuals begin to overlap in acoustic space over increasing geographic distances [4]. In our

individual scale dataset, the 3 native range sites at which we repeatedly sampled individuals 

were separated by greater distances (minimum distance of 11.12km apart) than the 3 sites 

sampled for the invasive range (3.44 – 7.45km apart), which we felt could influence Beecher’s

statistic if native range individuals separated by greater geographic distances overlapped 

more in acoustic space. Therefore, we identified 5 repeatedly sampled individuals that 

represented restricted geographic areas per range, recorded at either a single site-year in the 

native range (site 1145 in 2017), or recorded at 3 sites in single year (city of Austin in 2019) in

the invasive range. As it was not possible to assess 5 repeatedly sampled individuals at a 

single site in the invasive range, we performed a validation analysis to ask whether these 

individuals indeed represented similar patterns of call variation per range. 

A bootstrapping analysis was designed to evaluate patterns of variation in second 

harmonic frequency contours represented by three sets of individuals: 5 native range 

individuals randomly sampled from 3 sites, the 5 native range individuals recorded at a single 

site (1145), and the 5 invasive range individuals recorded in Austin 2019. DTW was 

performed on second harmonic frequency contours (no spline interpolation or smoothing, 5 
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points were dropped from the start and end of each contour) to obtain pairwise acoustic 

distances. Per bootstrapping iteration, we randomly sampled 4 calls per individual (or took all 

calls if there were only 4 total). For the native range comparison with 3 sites, we randomly 

sampled 5 of the 8 total individuals recorded over 3 sites. Then per individual, we obtained 

the difference in mean DTW distance within each individual compared to other individuals for 

the given range and comparison. This process was repeated over 1000 iterations. The mean 

difference in DTW distance and 95% CIs were calculated per range and comparison. Mean 

DTW differences were similar between the 5 native range individuals from a single site and 

the 5 invasive range individuals at 3 sites, but were lower for the 5 individuals randomly 

sampled from 3 native range sites (Supplementary Figure 2). Therefore, the individuals from 

the 3 native range sites (representing greater geographic spread than the invasive range 

individuals) were more likely to overlap in acoustic space. The native range individuals from a 

single site and the invasive range individuals from 3 sites did indeed represent similar 

patterns of acoustic variation, so we proceeded with these individuals for Beecher’s statistic 

calculations.

3.2 Calculation of Beecher’s statistic

Beecher’s statistic (HS) was calculated through the IDmeasurer package version 1.0.0 

[7] using two acoustic measurements: MFCC calculated from all calls per individual, and 

second harmonic frequency contours for 5 randomly sampled calls per bird (or all calls if 5 or 

less were recorded). As in frequency modulation analyses above, 5 points were dropped on 

either end of each frequency contour, but we did not perform spline interpolation or 

smoothing. HS was reported using the sum of principal components significantly related to 

individual identity (e.g. significantly different among individuals) (Supplementary Table 7). We 

estimated the number of potential unique individual signatures per range and measurement 
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as 2HS [7] (Supplementary Table 7). See the script 

“SimplerSignatures_AdditionalMaterials_04_IdentityContent.Rmd” and the RMarkdown output

provided on GitHub for more information.
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Supplementary Table 1: Nest estimates in the native and invasive ranges

Range Year
Department or City,

State
Site Code Estimated Nests

Native 2017 Maldonado PLVE 10

Native 2017 Colonia RIAC 109

Native 2017 San José ECIL 247

Native 2017 Colonia INES-01 10

Native 2017 Colonia SEMI 29

Native 2017 Colonia INES-03 50

Native 2017 Colonia INES-07 15

Native 2017 Colonia INES-06 20

Native 2017 Colonia INES-08 25

Native 2017 Colonia INES-05 6

Native 2017 Colonia 1145 8

Native 2017 Colonia ROSA 41

Native 2017 Colonia CHAC 19

Native 2017 Canelones INBR 20

Native 2017 Montevideo BCAR 33

Native 2017 Maldonado HIPE 15

Native 2017 Maldonado QUEB 10

Native 2017 Maldonado CISN 9

Native 2017 Colonia PIED 38

Native 2017 Rocha VALI 13

Invasive 2018 Gilbert, AZ GILB 3

Invasive 2019 Austin, TX INTR 13

Invasive 2019 Austin, TX ELEM 1

Invasive 2019 Austin, TX AIRP 5

Invasive 2019 Austin, TX SOCC 12

Invasive 2019 Austin, TX MANO 4

Invasive 2019 Austin, TX MART 8

Invasive 2011 Austin, TX MART 6

Invasive 2011 Austin, TX VALL 2

Invasive 2011 Austin, TX ELEM 4

Invasive 2011 Austin, TX SOFT 6
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Invasive 2011 Austin, TX AIRP 2

Invasive 2011 Austin, TX BART 1

Invasive 2011 Austin, TX INTR 20

Invasive 2011 New Orleans, LA ROBE 8

Invasive 2011 New Orleans, LA LAKE 2

Invasive 2011 Dallas, TX LAWT 4

Supplementary Table 1 Footnote: Estimated numbers of nests for a subset of recording sites, 
ordered from most recent to later sampling years per range. Nest estimates were collected 
from Smith-Vidaurre, Perez, and Wright field notebooks.
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Supplementary Table 2: Native range recording sites in Uruguay

Site Code Site Name Department Latitude Longitude NCalls Date

1 PIED
Piedra de los

Indios
Colonia -34.413 -57.849 21

2017-
10-25

2 * CHAC
La Chacra de los

Olivos
Colonia -34.413 -57.843 12

2017-
08-21

3 LENA Las Leñas Colonia -34.411 -57.838 19
2017-
10-23

4 PFER
Parque 
Ferrando

Colonia
-34.468,-
34.465

-57.831,
-57.827

53

2017-
06-19,
2017-
06-21

5 INES-08
INIA 

La Estanzuela -
08

Colonia -34.345 -57.733 27
2017-
07-13

6 * EMBR
Embarcadero de

Riachuelo
Colonia -34.444 -57.728 23

2017-
07-17,
2017-
07-21

7 INES-01
INIA 

La Estanzuela -
01

Colonia -34.349 -57.727 12
2017-
07-03

8 INES-07
INIA 

La Estanzuela -
07

Colonia -34.346 -57.710 9
2017-
07-13

9 INES-06
INIA 

La Estanzuela -
06

Colonia -34.344 -57.708 6
2017-
07-13

10 RIAC Riachuelo Colonia
-34.436,
-34.437

-57.706 25
2017-
06-28

11 INES-05
INIA 

La Estanzuela -
05

Colonia -34.340 -57.690 6
2017-
07-15

12 SEMI Semillero Colonia -34.326 -57.680 11
2017-
07-25

13 INES-03
INIA 

La Estanzuela -
03

Colonia -34.336 -57.668 15
2017-
07-11

14 INES-04
INIA 

La Estanzuela -
04

Colonia -34.335 -57.668 9
2017-
07-11

15 ARAP Las Termas del Salto -30.946 -57.520 12 2017-
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Arapey 05-07

16 * 1145 Ruta 1 km 145 Colonia
-34.375,
-34.376

-57.502,
-57.500

17

2017-
07-24,

2017-
07-26,

2017-
07-28,

2017-
07-29

17 ROSA Rosario Colonia -34.338 -57.336 15
2017-
07-27

18 ECIL Ecilda Paullier San José
-34.360,
-34.361

-57.060 17
2017-
07-28

19 PAVO Arroyo Pavón San José -34.442 -56.967 25
2017-
10-17

20 ARAZ
Balneario de

Arazati
San José -34.535 -56.812 15

2017-11-
03

21 KIYU
Balneario de

Kiyú
San José -34.607 -56.715 8

2017-11-
03

22 BAGU La Baguala Montevideo -34.848 -56.384 20
2017-
10-09

23 INBR INIA Las Brujas Canelones -34.668 -56.330 19
2017-
09-03

24 PEIX Camino Peixoto Montevideo -34.765 -56.279 19
2017-
10-06

25 BCAR Bodegas Carrau Montevideo -34.788 -56.223 13
2017-
10-20

26 FAGR
Facultad de
Agronomía

Montevideo -34.838 -56.219 7
2017-
09-05

27 CEME
Cementerio

Central
Montevideo -34.913 -56.187 6

2017-
10-18

28 GOLF Club de Golf Montevideo -34.923 -56.164 22
2017-11-

20

29 PROO
Parque

Roosevelt
Montevideo -34.855 -56.022 12

2017-
09-14

30 PLVE
Plaza Venus,

Piriápolis
Maldonado -34.870 -55.264 11

2017-
05-21

31 QUEB
Quebrada del

Castillo
Maldonado -34.834 -55.260 16

2017-
09-13



32 CISN
La Laguna de los

Cisnes
Maldonado -34.861 -55.150 28

2017-
09-13

33 SAUC
La Laguna del

Sauce
Maldonado -34.857 -55.041 6

2017-
09-12

34 HIPE

Centro de
Entrenamiento

Hípico Punta del
Este

Maldonado -34.825 -55.010 5
2017-
09-12

35 ELTE El Tesoro Maldonado -34.889 -54.863 23
2017-
09-13

36 VALI Barra de Valizas Rocha -34.334 -53.803 23
2017-11-

16

37 OJOS Ojos de Agua Rocha -33.804 -53.506 23
2017-11-

16

Supplementary Table 2 Footnote: Native range recording sites and dates in Uruguay. 
Numbers of calls recorded per site are reported (610 total). Asterisks denote the three sites at
which we repeatedly sampled marked or unmarked individuals for the individual scale. 
Recording sessions per site were typically performed in a single day. However, when 
assessing invasive range sites in Austin recorded in different years to harmonize site codes 
for temporal analyses (in which sites recorded relatively close to each other in different years 
were assigned the same site code), we also merged 2 pairs of native range sites that been 
kept separate in our previous analyses (PFER-01, PFER-03 and RIAC-01, RIAC-02) to 
represent very fine-scale geographic sampling [4]. RIAC-01 (8 calls) and RIAC-02 (17 calls) 
were recorded on the same day, but PFER-01 (19 calls) and PFER-03 (34 calls) recording 
sessions were from different days. Moreover, for an independent analysis of hierarchical 
mapping patterns, when calls were merged into a single extended selection table across 
ranges, we added a single call per repeatedly sampled individual to the site-scale dataset per 
range, for consistency with previous work. This pre-processing led to calls recorded on 
different days for sites EMBR and 1145. The suffix of these calls is “_site_scale”, so these can
be easily identified and/or removed as needed in future work. See section 1.2 for more 
details, and Supplementary Table 4 for repeatedly sampled individuals.
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Supplementary Table 3: Invasive range recording sites in the U.S.

Site Code Site Name City, State Latitude Longitude NCalls Date

1 GILB
Gilbert Town

Square
Gilbert, AZ 33.331 -111.791 16

2018-04-
09

2 LAWT
Lawther

Substation
Dallas, TX 32.820 -96.730 9

2011-02-
20

3 COMM
Austin Community

College
Austin, TX 30.404 -97.705 11

2004-03-
30

4 INTR
University of Texas

(UT) – Austin
Intramural fields

Austin, TX 30.316 -97.719 15
2011-02-

15

5 * INTR
UT – Austin

Intramural Fields
Austin, TX 30.317 -97.727 82

2019-08-
08

6 MANO Manor Rd. Austin, TX 30.299 -97.728 5
2019-08-

09

7 AIRP Airport Boulevard Austin, TX 30.285 -97.705 9
2019-08-

07

8 SOFT
McCombs Softball

Field
Austin, TX 30.281 -97.725 14

2011-02-
15

9 SOCC
Soccer Field,
César Chavez

Austin, TX 30.272 -97.767 77
2004-03-

30

10 * SOCC
César Chavez

Fields
Austin, TX 30.270 -97.761 93

2019-08-
09

11 VALL
Pleasant Valley

Rd.
Austin, TX 30.261 -97.711 5

2004-03-
30

12 VALL
Pleasant Valley

Rd. & 7th
Austin, TX 30.261 -97.711 10

2011-02-
15

13 ELEM
UT Elementary

School
Austin, TX 30.260 -97.718 12

2011-02-
15

14 * ELEM
UT Elementary

School
Austin, TX 30.260 -97.718 61

2019-08-
06

15 MART
Sam L. Martin
Middle School

Austin, TX 30.253 -97.731 14
2011-02-

15

16 MART
Sam L. Martin
Middle School

Austin, TX 30.251 -97.731 50
2019-08-

10

17 LAKE Lakeview Dr.
New

Orleans, LA
30.029 -90.077 6

2011-02-
18

18 FOLS
Folse Dr. & Harris

St.
New

Orleans, LA
30.027 -90.205 10

2004-03-
30

19 * ROBE Robert E. Lee Rd. New 30.021 -90.069 24 2011-02-
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Orleans, LA 18

20 BALL

Ballfield at corner
of W. Esplanade

& Oaklawn
New

Orleans, LA
30.013 -90.132 26

2004-03-
30

21 CANA Canal Blvd.
New

Orleans, LA
29.981 -90.110 13

2004-03-
30

22 BAPT Baptist Hospital Miami, FL 25.6878 -80.338 40
2004-03-

30

23 BUCK Buckingham Ave. Milford, CT 41.217 -73.038 60
2004-03-

30

24 MEAD Meadowside Rd. Milford, CT 41.210 -73.071 28
2004-03-

30

25 SHAK
Shakespeare

Theatre
Stratford, CT 41.184 -73.126 50

2004-03-
30

26 AUDU Milford Audubon Milford, CT 41.176 -73.102 17
2004-03-

30

Supplementary Table 3 Footnote: Invasive range recording sites and dates in the U.S. 
Numbers of calls recorded per site are reported (757 total). Sites recorded in 2004 were 
previously published [1]. Specific recording dates were not provided with the 2004 call 
dataset, so we assigned a single date to all 2004 sites within the dates reported by Buhrman-
Deever et al. (2007). Geographic coordinates are also approximate for all 2004 sites, as we 
obtained these by entering site names in Google Maps. Site codes were harmonized over 
time for Austin as described above (Supplementary Table 1). Asterisks denote the three sites 
at which we repeatedly sampled unmarked individuals for the individual scale. See section 1.2
for more details, and Supplementary Table 4 for repeatedly sampled individuals.  
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Supplementary Table 4: Repeatedly sampled individuals per range

Individual
ID

Site
Code

Site Name
Depart-ment

or City,
State

Lati-
tude

Longi-
tude

NCalls Date

1 NAT-AAT 1145 Ruta 1 km 145 Colonia -34.376 -57.500 12
2017-07-

29

2 NAT-UM1 1145 Ruta 1 km 145 Colonia -34.375 -57.502 25
2017-07-

28

3 NAT-UM2 1145 Ruta 1 km 145 Colonia -34.375 -57.502 23
2017-07-

24

4 NAT-UM3 1145 Ruta 1 km 145 Colonia -34.375 -57.502 5
2017-07-

24

5 NAT-UM4 1145 Ruta 1 km 145 Colonia -34.376 -57.500 13
2017-07-

26

6 NAT-UM5 CHAC
La Chacra de

los Olivos
Colonia -34.413 -57.843 7

2017-08-
21

7 NAT-RAW EMBR
Embarcadero
de Riachuelo

Colonia -34.444 -57.728 4
2017-07-

17

8 NAT-ZW8 EMBR
Embarcadero
de Riachuelo

Colonia -34.444 -57.728 8
2017-07-

21

9 INV-UM6 ASCA Ascarate Park El Paso, TX 31.754 -106.405 25
2019-03-

10

10 INV-UM10 INTR

University of
Texas (UT) –

Austin
Intramural

fields

Austin, TX 30.317 -97.728 6
2019-08-

08

11 INV-UM7 ELEM
UT Elementary

School
Austin, TX 30.260 -97.718 28

2019-08-
06

12 INV-UM9 ELEM
UT Elementary

School
Austin, TX 30.260 -97.718 5

2019-08-
06

13 INV-UM16 SOCC
César Chavez

Fields
Austin, TX 30.270 -97.761 8

2019-08-
09

14 INV-UM17 SOCC
César Chavez

Fields
Austin, TX 30.270 -97.761 5

2019-08-
09

15 INV-UM1 BART
Bartholomew

Park
Austin, TX 30.305 -97.695 23

2011-02-
15

16 INV-UM5 ROBE
Robert E. Lee

Rd.
New

Orleans, LA
30.021 -90.069 20

2011-02-
18

17 INV-UM19 CAME
Robert E. Lee

& Cameron Rd.
New

Orleans, LA
30.022 -90.065 12

2004-03-
30
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Supplementary Table 4 Footnote: Number of calls, recording locations ,and dates for known 
repeatedly sampled individuals per range (229 total calls). Each individual was recorded on a 
single day. Native range individuals (prefix “NAT” in the Individual ID column) were recorded 
in Uruguay in 2017, while invasive individuals (prefix “INV” in the Individual ID column) were 
recorded in the U.S in 2019, 2011 or 2004. Two individuals were recorded at sites not 
included in the site-scale datasets due to insufficient sampling: sites ASCA and BART. Site 
CAME in 2004 was close to the site labeled ROBE recorded in 2011, but we did not 
harmonize site codes to be the same over time at the individual scale. The recording date for 
individual INV-UM19 at CAME 2004 is an approximate date from previously published work 
[1].
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Supplementary Table 5: Supervised machine learning performance metrics

Model
Training accuracy
(%) and 95% CI

Final parameters
Validation

accuracy (%)
Prediction

accuracy (%)

Stochastic
gradient
boosting

92.28 
(91.33, 93.16)

n.trees = 1600,
interaction.depth =
3, shrinkage = 0.1,
nminobsinnode = 1

- -

Random 
forests

91.09 
(90.08, 92.03)

mtry  = 2, splitrule =
gini, min.node.size
= 1, n.trees = 2000

91.99 87.59

Supplementary Table 5 Footnote: Supervised machine learning analyses of structural 
differences between ranges. Models were trained to classify calls back to the native or 
invasive range. The random forests model was selected for validation and prediction.
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Supplementary Table 6: Effect sizes of range with 95% CI for 18 acoustic measurements

Measurement Effect size 95% CI

1 Number of peaks 1.50 (2.00, 0.99)

2 Modulation rate 1.30 (1.79, 0.81)

3 Peak – trough slope -1.23 (-0.75, -1.72)

4 Spectral entropy -0.83 (-0.36, -1.30)

5 Frequency interquartile range -0.81 (-0.34, -1.28)

6 Mean peak frequency 0.57 (1.03, 0.11)

7 Modulation index 0.51 (0.96, 0.05)

8 Dominant frequency range -0.49 (-0.04, -0.95)

9 Duration 0.48 (0.94, 0.02)

10 End dominant frequency 0.44 (0.90, -0.02)

11 Minimum dominant frequency 0.42 (0.87, -0.04)

12 Peak frequency 0.40 (0.85, -0.06)

13 First time quartile 0.37 (0.83, -0.08)

14 Third frequency quartile -0.35 (0.10, -0.81)

15 Kurtosis -0.34 (0.11, -0.79)

16 Maximum dominant frequency -0.34 (0.12, -0.79)

17 Start dominant frequency 0.25 (0.70, -0.21)

18 Dominant frequency slope 0.15 (0.61, -0.30)

Supplementary Table 6 Footnote: Effect sizes of range on different acoustic measurements 
for 80 calls compared between ranges. Shown are 3 frequency modulation measurements 
and the 15 standard acoustic measurements used in supervised machine learning, in order of
decreasing absolute effect size (top to bottom). Frequency measurements are in kHz and 
temporal measurements in seconds, although modulation rate is in peaks/s. Peak – trough 
slope represents change in kHz/change in indices of spline-interpolated points. 95% CIs that 
do not cross 0 (significant effect sizes) are in bold. Effect sizes greater than or equal to 0.8 
were considered large [6]. Negative effect sizes indicate higher mean values for the invasive 
range, with the exception of peak – trough slope.
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Supplementary Table 7: Beecher’s statistic and possible unique individual signatures

Acoustic
measurements

Range NCalls HS NSig

2nd harmonic
Native 25 3.42 11.70

Invasive 25 2.88 8.29

MFCC
Native 78 7.71 59.44

Invasive 52 5.80 33.64

Supplementary Table 7 Footnote: Individual identity content in calls of repeatedly sampled 
individuals per range, using Beecher’s information statistic (HS) with two measurements: Mel-
frequency cepstral coefficients (MFCC) and second harmonic frequency contours. NSig is the 
number of individual signatures predicted by HS. 5 individuals were used per calculation per 
range.
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Supplementary Figure 1:

Supplementary Figure 1 Legend: Structural differences between ranges were stable over 15 
years of sampling in the invasive range. Means and standard errors for the same acoustic 
parameters that displayed significant effects of range in Figure 2b. Invasive range-years 
represent 75 calls set aside for temporal comparison of frequency modulation measurements,
and the 40 native range calls were used for the comparison between ranges.  
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Supplementary Figure 2:

Supplementary Figure 2 Legend: Validation of repeatedly sampled individuals used for 
Beecher’s statistic calculations. Shown are the mean differences in DTW distance of second 
harmonic frequency contours within an individual compared to among individuals at either a 
single site (native range only) or 3 sites (both ranges). The single site comparison is missing 
for the invasive range due to insufficient sampling of individuals. 5 individuals were used per 
comparison. 95% CIs were generated by bootstrapping with 1000 iterations. These results 
suggested that using 3 geographically proximate sites in the invasive range provided patterns 
of variation among individuals equivalent to using a single site in the native range, and 
supported using these individuals for direct comparisons of Beecher’s statistic between 
ranges.
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