
SUPPLEMENTARY MATERIALS

Analyses reported can be reproduced using the data provided by Smith-Vidaurre 

et. al. (2019). Code will also be made available on GitHub: 

https://github.com/gsvidaurre/strong-individual-signatures  .  

SUPPLEMENTARY METHODS

1. Sound Analysis with Monk Parakeet Contact Calls

1.1 Contact Call Selection, Preliminary Assessment of Acoustic Similarity by 

Visual Inspection and Quality Control Processing

We selected contact calls from original recordings using Raven version 1.5 

(Cornell Laboratory of Ornithology, Ithaca, NY, USA). Although monk parakeets 

have a diverse vocal repertoire, contact calls have a distinct structure and 

frequency range that allowed us to distinguish them from other call types 

(Martella and Bucher 1990). We collected metadata on local call context in a 

separate spreadsheet as we selected calls, including group size and identity for 

calls recorded for higher social scales. We imported Raven selection tables 

containing temporal coordinates of selected calls into R (R Core Team 2018) with

the package Rraven version 1.0.4 (Araya-Salas 2017). We used the package 

warbleR version 1.1.15 (Araya-Salas and Smith-Vidaurre 2017) to optimize 
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parameters for Fourier transformation and generate spectrograms in R. We 

proceeded with the following parameters: Hanning window, window length of 

378, overlap of 90, minimum color level of -53, bandpass filter of 0.5 to 9 kHz, 

and amplitude threshold of 15 (% relative to background). For spectrograms, we 

used a margin of 0.01 seconds around each signal, frequency limits of 0 – 10 

kHz and a resolution of 300 ppi for .jpeg image files. Unless specified otherwise, 

we used these same parameters when generating spectrograms, as well as for 

measurements of acoustic similarity or acoustic and spectrogram image 

parameters, throughout our analyses. 

We made catalogs of spectrograms at the individual and site social scales 

using warbleR. We used these catalogs for quality control processing, as well as 

a preliminary assessment of acoustic similarity by visual inspection. We used 

catalogs to visually score calls by quality (High, Medium, Low), depending on the 

visible ratio of signal amplitude to background noise or visible patterns of 

amplitude saturation. We also scored calls by whether or not there was overlap 

within the bandpass filter limits with other acoustic signals (e.g. conspecifics or 

heterospecifics calling nearby or the recordist’s narration). We entered this 

information into the selection table for selected calls. A single observer performed

visual inspection for quality control processing and assessing acoustic similarity. 

Our preliminary results with catalogs of repeatedly sampled individuals indicated 

relatively high consistency at the individual scale, such that repeated calls from 

individuals could be identified by consistent frequency modulation patterns that 
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were distinct from other individuals. However, catalogs at the site social scale 

generally showed very high variability within sites, indicating that individuals were

not converging on shared calls within sites. 

We also used catalogs to address potential repeated sampling of the 

same individual(s) at higher social scales. At higher social scales (pairs, flocks, 

sites), we were limited to using a single contact call per individual, as birds 

produced few contact calls at these scales. We selected one contact call per 

individual and assumed that each contact call represented a unique individual. 

However, as we were recording unmarked birds, it was possible that some calls 

represented repeated sampling of the same individual, which could lead to 

inflated call homogeneity at higher social scales. As our preliminary visual 

inspection results indicated that repeated calls from individuals could be 

identified by frequency modulation patterns, one observer visually assessed 

patterns of individual consistency and distinctiveness in site call catalogs to 

identify repeated sampling of individuals in the data set used for higher social 

scales. As the pair and flock social scales were nested within the site scale, the 

site catalogs contained calls used for the former social scales. We identified 19 

calls at this step that represented such probable repeated sampling of individuals

based on visual similarity; these were distributed among 11 sites across the 

transect and represented a small fraction of the total calls in the data set. Each of

these 11 sites had a mean of 1.73 calls and a range of 1 – 6 calls flagged as 

potential repeated individuals. A single site, BCAR, had 6 calls attributed to 

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66



repeated individuals. BCAR was a site where we recorded birds making short 

and frequent flights for stick-collecting, which increased the likelihood of 

repeatedly sampling the same individuals. Although we did not expect this low 

level of potential repeated sampling to bias our results, we nonetheless removed 

these calls from subsequent analyses. 

After visual quality scoring and addressing potential repeated sampling of 

individuals at higher social scales, we imported the selection table of calls across

social scales back into R. We used metadata on call quality to remove calls 

across social scales that had either low-quality scores and/or overlapping signals

within the bandpass filter limits (regardless of quality), or calls for higher social 

scales that had been attributed to potential repeated sampling of individuals. We 

used the warbleR package to continue quality-control processing. We removed 

calls from duplicate recording sessions, retaining unique recording sessions per 

recording site that had the most high-quality contact calls. We tailored temporal 

coordinates of calls across all social scales to reflect consistent selection of start 

and end times per call. We calculated signal-to-noise (SNR) ratio and removed 

calls that had SNR < 7 across all social scales. Finally, we calculated sample 

sizes for unique social groups across social scales. We retained repeatedly 

sampled individuals with 4 or more contact calls. We retained pairs for which we 

had a call per individual, and retained flocks for which we had 2 or more calls. 

We retained sites with 5 or more calls. See Supplementary Table 1 for 

information on sample sizes across sites.
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Supplementary Table 1: Recording Sites in Uruguay Retained for Sound Analysis

Site Site Name Department Latitude Longitude nCalls Date

1
PIED

Piedra de los

Indios

Colonia -34.413 -57.849
21 25 - Oct

2
* CHAC

La Chacra de los

Olivos
Colonia

-34.413 -57.843
12 21 - Aug

3 LENA
Las Leñas Colonia

-34.411
-57.838 19 23 - Oct

4
PFER-

01

Parque 

Ferrando - 01
Colonia -34.468 -57.831 34 19 - Jun

5
PFER-

03

Parque 

Ferrando - 03
Colonia -34.465 -57.827 19 21 - Jun

6 INES-08
INIA 

La Estanzuela - 08
Colonia -34.345 -57.733 27 13 - Jul

7 * EMBR
Embarcadero de

Riachuelo
Colonia -34.444 -57.729 22 21 - Jul

8 INES-01
INIA 

La Estanzuela - 01
Colonia -34.349 -57.727 12 03 - Jul
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9 INES-07
INIA 

La Estanzuela - 07
Colonia -34.346 -57.71 9 13 - Jul

10 INES-06
INIA 

La Estanzuela - 06
Colonia -34.344 -57.708 6 13 - Jul

11 RIAC-02 Riachuelo - 02 Colonia -34.436 -57.706 8 28 - Jun

12 RIAC-01 Riachuelo - 01 Colonia -34.437 -57.706 17 28 - Jun

13
INES-05 INIA 

La Estanzuela - 05
Colonia -34.34 -57.69 6 15 - Jul

14 SEMI Semillero Colonia -34.326 -57.68 11 25 - Jul

15 INES-03
INIA 

La Estanzuela - 03
Colonia -34.336 -57.668 15 11 - Jul

16 INES-04
INIA 

La Estanzuela - 04
Colonia -34.335 -57.668 9 11 - Jul

17
ARAP Las Termas del

Arapey
Salto

-30.946
-57.52 12 07 - May

18 * 1145 Ruta 1 km 145 Colonia -34.376 -57.502 13 26 - Jul



19 ROSA Rosario Colonia -34.338 -57.336 15 27 - Jul

20 ECIL Ecilda Paullier San José -34.361 -57.06 17 28 - Jul

21 PAVO Arroyo Pavón San José -34.442 -56.967 25 17 - Oct

22 ARAZ
Balneario de

Arazati
San José -34.535 -56.812 15 03 - Nov

23 KIYU Balneario de Kiyú San José -34.607 -56.715 8 03 - Nov

24 BAGU La Baguala
Montevideo

-34.848 -56.384 20 09 - Oct

25 INBR INIA Las Brujas Canelones -34.668 -56.33 19 03 - Sep

26 PEIX Camino Peixoto Montevideo
-34.765

-56.279 19 06 - Oct

27 BCAR Bodegas Carrau Montevideo -34.788 -56.224 13 20 - Oct

28 FAGR
Facultad de

Agronomía
Montevideo -34.838 -56.219 7 05 - Sep



29 CEME
Cementerio

Central
Montevideo -34.913 -56.187 6 18 - Oct

30 GOLF Club de Golf Montevideo -34.923 -56.164 22 20 - Nov

31 PROO Parque Roosevelt Montevideo -34.855 -56.022 12 14 - Sep

32 PLVE
Plaza Venus,

Piriápolis
Maldonado -34.87 -55.264 11 21 - May

33 QUEB
Quebrada del

Castillo
Maldonado -34.834 -55.26 16 13 - Sep

34 CISN
La Laguna de los

Cisnes
Maldonado -34.861 -55.15 28 13 - Sep

35 SAUC
La Laguna del

Sauce
Maldonado -34.857 -55.041 6 12 - Sep

36 HIPE

Centro de

Entrenamiento

Hípico Punta del

Este

Maldonado -34.826 -55.01 5 12 - Sep



37 ELTE El Tesoro Maldonado -34.889 -54.863 23 13 - Sep

38 VALI Barra de Valizas
Rocha

-34.334 -53.803 23 16 - Nov

39 OJOS Ojos de Agua Rocha -33.804 -53.506 23 16 - Nov

All calls were recorded in 2017. The dataset for higher social scales 

encompassed 605 contact total calls across 39 sites. The three sites where we 

recorded repeatedly sampled individuals for the individual scale are marked with 

asterisks (CHAC: nCalls = 7, nIndividuals = 1;  EMBR: nCalls = 12, nIndividuals = 2; 1145: 

nCalls = 78, nIndividuals = 5). We obtained recordings for each repeatedly sampled 

individual over a single day. Contact calls were repeatedly sampled from a single 

unmarked individual at site CHAC on 21-August, and from 2 marked individuals 

at site EMBR on 17-June and 21-June. We repeatedly sampled 4 unmarked 

individuals at site 1145 on 24-June (2 unmarked birds), 26-June, 28-June and 

one marked individual on 29-June.

1.2 Visual Inspection of Contact Call Acoustic Similarity Across Multiple 

Observers
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We collected classifications of monk parakeet contact calls across social scales 

by multiple observers. We employed Shiny, which is a flexible framework for 

building dynamic and interactive graphics in R (Chang et al. 2018). We modified 

original code provided by Dr. Geovany Ramirez to render spectrograms as drag 

and drop elements in Shiny (hosted on GitHub: 

https://github.com/geoabi/shinyDragAndDrop), as well as code modified from

a multi-page Shiny example created by Jaehyeon Kim (hosted on GitHub: 

https://github.com/jaehyeon-kim/shiny-multipage). We set up our Shiny app 

to present a 4-class problem per each of the 4 social scales (individual, pair, 

flock, site) to observers. For the individual scale, we selected 4 calls per each of 

the 4 repeatedly sampled individuals (16 calls total), used for random forests 

model validation (Supplementary Methods 1.7). We randomly selected calls from 

3 of these individuals that had more than 4 calls, and selected all calls from the 

individual for which we had sampled only 4 calls (16 calls total). We used these 4

individuals in order to provide a direct comparison to acoustic similarity 

generated during random forests validation (Supplementary Methods 3.3). For 

the higher social scales, we selected 4 social groups among all social groups 

available per social scale. For the pair scale, we randomly selected 4 pairs 

among the 44 pairs in our data set (8 calls total). We subset the 29 flocks in our 

data set to retain flocks with 3 calls. We randomly selected 4 flocks out of the 

remaining 10 flocks (12 calls total). For the site scale, we calculated mean SNR 

by site and retained the first half of sites with the highest SNR. We randomly 
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selected 4 sites from this subset of sites. We randomly selected 4 calls from all 

calls available for these 4 sites (16 calls total). We generated blinded 

spectrograms after selecting calls across social scales, by removing titles or any 

other textual information that could give away the social group or geographic 

location. We set up the app such that each social scale was a separate page, 

and social scales were presented randomly to each observer. On each page, 

spectrograms for the given social scale were randomly ordered and then 

presented together as drag and drop elements. Observers were prompted to 

evaluate visible patterns of acoustic similarity, and drag each spectrogram into 

one of 4 separate classes (Classes A through D) based on such perceived 

patterns of shared call structure. Observers were also informed that number of 

calls per class was the same across classes. Each time an observer clicked 

“Next”, the app collected the observer’s classifications in a .csv file (one per 

observer).

1.3 Measuring Acoustic Similarity by Spectrographic Cross-Correlation (SPCC)

We used the warbleR package to measure SPCC acoustic similarity (Araya-

Salas and Smith-Vidaurre 2017). SPCC slides two spectrograms over each other

in sliding time steps and correlates amplitude values at each step. This method 

yields a pairwise matrix of peak correlation values between acoustic signals. We 

used Pearson’s correlation method to calculate pairwise acoustic similarity 

among calls. We also used Fourier transformation and other sound analysis 
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parameters as described above (Supplementary Methods 1.1). We saved the 

resulting pairwise matrix containing peak correlation values for subsequent 

analyses, including input into random forests. 

1.4 Overview of Random Forests Approach to Measure Acoustic Similarity

Random forests is a machine learning approach used for prediction in 

classification or regression problems. A forest is composed of up to thousands of 

decision trees, and each tree splits data based on values of predictor variables. 

The decision trees generate a random forest by selecting a random subset of 

predictor variables at each split. The resulting forest of uncorrelated trees, when 

well-trained, can serve as a strong learner capable of accurate predictions 

(Valletta et al. 2017), including for avian acoustic signals (Keen et al. 2014; 

Humphries et al. 2018). We used random forests to measure acoustic similarity 

from a large set of acoustic and image features characterizing monk parakeet 

contact call structure. 

We implemented random forests in a supervised approach to ensure that 

models would be biologically relevant. Our approach to supervised model-

building and training was influenced by the complexity of these acoustic signals. 

Our visual assessments of site call catalogs confirmed that calls within sites were

so variable that multi-observer scoring or classification (necessary to produce 

labels for supervised random forests) could be easily confounded. However, after

visual assessment of catalogs for repeatedly sampled individuals, we found that 
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individuals produced sufficiently consistent calls to use individual identity as 

reliable classes. Thus, we trained models on calls from repeatedly sampled 

individuals, using individual identities as labels to assess classification 

performance. This approach allowed us to learn a single acoustic similarity metric

for calls over higher social scales that was independent of pair, flock and site 

labels or geographic distance values. We built and trained three random forests 

models with half of the repeatedly sampled individuals, and selected among 

models with the highest classification performance during training. After model 

validation with the second half of repeatedly sampled individuals, we selected a 

final model to learn acoustic similarity for calls at higher social scales (e.g. test 

data set). We extracted the resulting proximity matrix to ask how acoustic 

similarity manifested across the pair, flock, and site social scales, as well as over 

geographic distance. See Supplementary Figure 1 for a general workflow of our 

approach.
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Supplementary Figure 1: A workflow for our analytical approach measuring 
acoustic similarity by random forests. Circular arrows demonstrate steps of the 
workflow that were repeated as appropriate. See Supplementary Methods 1.1 – 
1.15 and 3.1.1 – 3.1.13 for more information on how we implemented each step 
of the workflow.
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1.5 Acoustic and Image Parameters Used to Generate Features for Random 

Forests Models

We used a large set of acoustic and image parameters to build random forests 

models. These parameters included a variety of measurements of acoustic 

similarity or acoustic structure: SPCC, dynamic time warping (DTW) on dominant

frequency time series (dfDTW), DTW on spectral entropy time series 

(spentDTW), multivariate DTW on dominant frequency and spectral entropy time 

series (multiDTW), 27 acoustic parameters measured across the time, frequency 

and amplitude domains, 88 Mel-frequency cepstral coefficients and derivatives, 

as well as 2919 image parameters. 

SPCC and DTW-based parameters were pairwise acoustic similarity 

measurements. In selecting 27 acoustic parameters across the 3 sound domains,

we excluded all estimates of fundamental frequency from acoustic parameters. 

During preliminary analyses, we found that fundamental frequency estimates did 

not map on to fundamental frequency traces visible in spectrograms (using the 

trackfreqs function in warbleR), likely due to shifts in the relative energy of the 

fundamental frequency versus higher harmonics throughout the duration of each 

call. The 27 acoustic parameters we retained were: duration, mean frequency, 

standard deviation of frequency, median frequency, the first and third quartile 

frequencies, the interquartile frequency range, median time, first and third 

quartile times, the interquartile time range, skewness, kurtosis, spectral entropy, 

time entropy, entropy (product of spectral and time entropy), spectral flatness, 
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mean dominant frequency, minimum dominant frequency,  maximum dominant 

frequency, dominant frequency range, modulation index, dominant frequency at 

the start and end of the signal, the slope of the dominant frequency, peak 

frequency, and mean peak frequency (see Araya-Salas & Smith-Vidaurre (2017) 

and specan function documentation in the warbleR package for more information

on these acoustic parameters). We used warbleR version 1.1.15 to measure all 

acoustic parameters, including Mel-frequency cepstral coefficients (Araya-Salas 

and Smith-Vidaurre 2017), which in turn relies on the packages seewave version 

2.1.0 (Sueur et al. 2008) and tuneR version 1.3.3 (Ligges et al. 2018). We 

measured spectrogram image parameters using the image-processing software 

WND-CHRM version 1.6 (Shamir et al. 2008), which has previously been used to

measure and classify cetacean acoustic signals (Shamir et al. 2014). See 

supplementary code on GitHub for more details on how we generated 

spectrograms for WND-CHRM. WND-CHRM extracts thousands of image 

parameters, including Chebyshev statistics, Chebyshev-Fourier statistics, Gabor 

filters, edge statistics, and other parameters used for image processing. See 

Shamir et al. (2008) for an extensive list of the image processing parameters 

measured by WND-CHRM. We used the packages Rtsne version 0.13 (Krijthe 

2015), caret version 6.0-80 (Wing and Kuhn 2018), randomForest version 4.6-14 

(Liaw and Wiener 2002) and ranger version 0.10.1 (Wright & Ziegler, 2017) for 

machine learning approaches. 
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1.6 Extraction of Acoustic and Image Features to Build Random Forests Models

We compiled acoustic and image parameters across calls for feature extraction 

by complementary unsupervised machine learning methods: Multidimensional 

Scaling (MDS) and Principal Components Analysis (PCA), versus t-Distributed 

Stochastic Neighbor Embedding (t-SNE), a newer method for visualization and 

dimensionality reduction that can outperform PCA under some conditions (van 

der Maaten and Hinton 2008; van der Maaten 2009). These methods served to 

convert raw acoustic and image parameters to tabular features for random 

forests, while reducing the dimensionality and collinearity of the raw parameters. 

We optimized feature extraction with the repeatedly sampled individual calls, and

retained all features derived by the complementary feature extraction methods 

(MDS and PCA versus t-SNE) for random forests models. We repeated the 

feature extraction routine for the site call data set, and built a final predictor set of

MDS, PCA and t-SNE acoustic and image features for calls across social scales. 

We added 4 random variables to serve as built-in “noise” variables to ground-

truth random forests variable importance. We removed highly collinear features 

(Pearson’s r > 0.75) from our predictor dataset prior to model training and 

checked that all remaining features were not highly correlated to signal-to-noise 

ratio (SNR) (Pearson’s r < 0.75).

1.7 Splitting Calls for Training, Validation and Testing
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We chose 4 repeatedly sampled individuals for supervised model training (73 

calls, 75.3% of repeatedly sampled individual calls), and set aside the remaining 

repeatedly sampled individuals (4 birds, 24 calls, 24.7% of repeatedly sampled 

individual calls) to validate model performance. We set aside calls at higher 

social scales for measuring acoustic similarity with the final validated model. 

1.8 Training Model 1 with Different Random Forests Implementations

Previous work has shown that random forests implementations in different 

software (R, Python, SAS) yield different results, particularly related to variable 

importance (Soifua 2018). We could not find much information comparing the 

efficacy of different random forests implementations in R. As such, we proceeded

by building our first model (Model 1) with two implementations from the ranger 

and randomForest packages. We retained all acoustic and image features that 

remained after filtering for high collinearity. We tuned mtry over 10 evenly spaced

values from 2 to the total number of predictors. mtry is the number of random 

variables to be selected at each decision tree split, injecting randomness into the 

resulting forest. We iterated over varying numbers of trees (500, 1000, 1500, 

2000, 2500). We trained models using 5 iterations of repeated 10-fold cross-

validation via the caret package. We compared training performance and variable

importance of Model 1 over values of mtry, total trees and the ranger and 

randomForest implementations. We used permuted variable importance for 

ranger, and Gini variable importance for randomForest.
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1.9 Model 1 Training Performance and Variable Importance Results

ranger yielded higher Model 1 training accuracy than randomForest 

(Supplementary Table 2). We also found different variable importance results 

between implementations, similar to reported results among random forests 

implementations in R, Python and SAS (Soifua 2018). However, these 

differences in variable importance we identified could in part be due to using 

different variable importance metrics per implementation. Given the difference in 

performance between implementations, we proceeded with the ranger 

implementation.  

Supplementary Table 2: Random Forests Model Training and Validation 

Performance For Monk Parakeet Contact Calls

Model
Implementation Final Number

of Trees
mtry

Training

Accuracy

(%)

Validation

Accuracy (%)

by Model-based

Clustering

1
ranger 2500 33 99.18 -

randomForest 2500 348 87.4 -

2 ranger 500 2 100 95.8

3 ranger 2500 2 100 95.8
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Random model forests model training and validation for monk parakeets. Model 

1 corresponds to the full set of acoustic and image features. Models 2 and 3 

were built by either manual or automatic feature selection. The final number of 

trees is the total number of decision trees grown for each forest. mtry is the 

number of variables randomly selected at each split per tree. Training accuracy is

reported as the percentage of correctly classified calls reported by random 

forests. Validation accuracy is reported as the percentage of correctly classified 

calls by model-based clustering on the proximity matrix. The final model we used 

for predicting acoustic similarity over higher social scales is in bold.

1.10 Training ranger Models 2 and 3

We built and trained two additional ranger models. We built Model 2 by manual 

feature selection, in which we removed variables with importance equal to or less

than random variables in Model 1. We built Model 3 by automatic feature 

selection, using a built-in bagged trees caret function. We trained Models 2 and 3

by iterating over mtry and total trees as in Model 1 training. 

1.11 Comparing Classification Performance and Variable Importance Across 

ranger Models

All three ranger models ranked several SPCC and Mel-frequency cepstral 

features among the top important variables. In preliminary results with repeatedly

sampled individual calls, we found that SPCC and Mel-frequency cepstral 
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coefficients represented visible patterns of individual consistency and 

distinctiveness. Therefore, we considered variable importance of SPCC and Mel-

frequency cepstral coefficients reliable indicators of models’ biological relevance. 

Model 1 achieved 99.18% training classification accuracy, while Models 2 and 3 

both achieved 100% training classification accuracy. We chose Models 2 and 3 

(manual or automatic feature selection, respectively) for model validation. 

1.12 Random Forests Model Validation with ranger Models 2 and 3

We performed model validation by predicting acoustic similarity of the repeatedly 

sampled individual validation dataset with Models 2 and 3. As this dataset 

encompassed different classes (e.g. different individuals altogether) than calls 

used for training, we ignored the random forests classification results and 

extracted the proximity matrix as the predicted acoustic similarity. We ran model-

based clustering on the proximity matrix using mclust version 5.4.1 (Scrucca et 

al. 2017) to ask how well each random forests model predicted patterns of 

acoustic similarity with respect to individual identity. We allowed the clustering 

algorithm to choose a best number of clusters among 1 – 6 total clusters (2 

beyond the true number of clusters, e.g. 4 repeatedly sampled individuals). The 

clustering approach identified 4 optimal clusters for both Models 2 and 3, 

matching the true number of individuals used for validation, and classified all but 

one call correctly for 95.8% classification accuracy (Figure 2C, Supplementary 
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Table 2). We chose Model 2 (manual feature selection) for final testing, although 

Model 3 (automatic feature selection) would have served just as well. 

1.13 Additional Validation of Acoustic Similarity Predicted by ranger Model 2 

We performed additional validation of acoustic similarity predicted by Model 2. 

We ruled out a role for SNR in driving patterns of acoustic similarity predicted by 

random forests. We identified centroid calls per cluster (see above). We used 

Spearman’s correlation to determine whether distance to centroid for non-

centroid calls was significantly correlated with SNR, and found no significant 

correlation (Spearman’s rho = -0.04, p = 0.8562). 

1.14 Predicting Acoustic Similarity at Higher Social Scales with ranger Model 2

Our validation results confirmed that random forests yielded biologically relevant 

acoustic similarity patterns. Indeed, random forests acoustic similarity reflected 

patterns of individual consistency and distinctiveness identified by SPCC (Figure 

2B). We used the final, validated random forests model (ranger Model 2, 

Supplementary Table 2) to predict acoustic similarity of calls at higher social 

scales. We extracted the resulting proximity matrix for subsequent analyses to 

ask how acoustic similarity manifested across the pair, flock, and site social 

scales, as well as over geographic distance. We did not use the random forests 

proximity matrix for the repeatedly sampled individual validation dataset in 
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subsequent analyses at the individual scale, as we had used these individuals to 

train models. 

1.15 Higher Acoustic Similarity over Closer Geographic Distances by Random 

Forests 

Random forests, by relying on many quantitative features, picked up a significant 

signature of geographic distance (e.g. overdispersion among sites in acoustic 

space) missed by SPCC (Figure 3B,D, Supplementary Figure 2B,C, Table I). 

Among the features that displayed such signatures of geographic distance were 

dfDTW t-SNE features, MDS features of acoustic parameters measured across 

the time, frequency and amplitude domains, MDS and t-SNE features of Mel-

frequency cepstral coefficients, and MDS and t-SNE features of image 

parameters.
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Supplementary Figure 2: Monk parakeet contact calls exhibit low acoustic 
similarity within sites. A) Catalog with spectrograms of 4 randomly selected calls 
for 3 sites across the transect: PIED (westernmost), PEIX (middle) and OJOS 
(easternmost) (Supplementary Table 1). The legend indicates site identity. B) 
Distribution of calls in SPCC acoustic space. C) Distribution of contact calls in 
random forests acoustic space. We used t-SNE for dimensionality reduction of 
similarity matrices. Numbered symbols in B and C correspond to numbered 
spectrograms in A. Convex hull polygons in B and C delineate the acoustic space
encompassed by each site’s set of calls.
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2. Using Matrix Regression to Evaluate Patterns of Acoustic Similarity over 

Social Scales and Geographic Distance

The Mantel test is a linear matrix regression method (Mantel 1967) that can be 

used to assess relationships between variables composed of non-independent 

data, including pairwise similarity measurements (Wright 1996). Another useful 

feature of Mantel tests is that they can accept matrices of binary or continuous 

values, such that acoustic similarity matrices can be correlated against matrices 

of binary group identity or geographic distance values (Wright 1996). As such, 

Mantel tests have often been used to assess patterns of SPCC acoustic similarity

in parrot contact calls (Wright 1996; Guerra et al. 2008; Wright et al. 2008). 

We used Mantel tests to ask if calls were more similar within social groups

at each social scale, and if acoustic similarity decreased over geographic 

distance for monk parakeets. We performed Mantel tests on calls from 4 social 

scales and 2 geographic scales (regional: all sites across the transect ,and local: 

sites in the Colonia department), using SPCC and random forests acoustic 

similarity. We encoded individual identity or social group membership at each 

social scale by generating pairwise binary identity matrices (e.g. 1 = two calls 

from the same individual or social group, 0 = two calls from different individuals 

or social groups). We converted acoustic similarity and binary identity matrices to

distance matrices by subtracting matrices from 1. We implemented Mantel tests 

using the R package vegan version 2.5-2 with 9999 permutations (Oksanen et al.

2018). We also used vegan to perform Mantel-based spatial autocorrelation with 
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999 permutations, to evaluate whether acoustic similarity decreased in a linear 

fashion over increasing geographic distance. We split calls into 25 distance 

classes of 2km or 52 classes of 10km at the local and regional geographic 

scales, respectively. The first distance class per geographic scale included calls 

recorded at the same site. We dropped distance classes with zero or too few 

observations. We generated correlograms using Holm’s p-value correction for 

multiple testing (Holm 1979).

3. Validation of Our Analytical Approach and Findings with Monk Parakeets

3.1 Validation of Our Random Forests Approach with Another Parrot Species

3.1.1 Overview of Species Comparison

We validated our analytical approach measuring acoustic similarity of monk 

parakeet calls by SPCC and random forests. We asked whether SPCC and 

random forests could identify previously documented patterns of acoustic 

similarity in another parrot species. We compared random forests and SPCC 

acoustic similarity at the site social scale between monk parakeets and yellow-

naped amazons (Amazona auropalliata), a species that exhibits hierarchical 

mapping over social scales and regional dialects on the Pacific coast of northern 

Costa Rica and southern Nicaragua (Wright 1996). We used contact calls 

recorded in a single year for each species, and published calls for yellow-naped 
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amazons (Wright, 1996). We measured SPCC similarity and built random forests 

models per species. For this section of the Supplementary Methods, we 

abbreviate monk parakeets as MNK and yellow-naped amazons as YNA.

3.1.2 Pre-processing MNK and YNA Contact Calls

YNA calls were contained within cuts of original recordings. We pre-processed 

YNA calls in a manner consistent with our previous pre-processing of MNK calls 

(Supplementary Methods 1.1). We removed YNA calls with visibly obvious 

background noise. We did not calculate SNR for YNA calls, as there was not 

sufficient time before and after selected calls in each cut to calculate noise levels.

We standardized MNK calls to the same sampling rate as YNA calls (22050 Hz). 

Calls for both species were at 16 bit sampling depth. We extracted selected MNK

calls as cuts of original recordings to mirror selection of YNA calls. We added 0.5 

seconds of silence before and after calls of both species to facilitate SPCC 

measurements. We made selection tables to facilitate measuring acoustic and 

image parameters in R and WND-CHRM. 

3.1.3 Fourier Transformation Parameters Used for Species Comparison

We identified Fourier transformation parameters for pre-processed MNK and 

YNA calls. For MNK, we settled on: Hanning window, window length of 288, 

overlap of 90, and minimum color level of -40. We kept all other parameters the 

same as in our previous analyses with the MNK calls (Supplementary Methods 
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1.1). For YNA, we used: Hanning window, window length of 378, overlap of 90, 

minimum color level of -40, 0 – 4 kHz bandpass filter, and amplitude threshold of 

10 (% relative to background). Unless specified otherwise, we used these same 

parameters for all measurements of acoustic similarity or acoustic and image 

parameters. 

3.1.4 Measuring Acoustic Similarity by SPCC

We measured SPCC acoustic similarity for both species. We reran SPCC for 

MNK calls using the parameters above, as these calls had been down-sampled. 

We used Pearson’s correlation method and saved the resulting pairwise matrices

containing peak correlation values for subsequent analyses.

3.1.5 Overview of Random Forests Modeling Approach

We measured acoustic similarity of contact calls by random forests for MNK and 

YNA. We used a similar workflow to measure parameters, extract features, build, 

train, and validate models as in our previous analysis with monk parakeet calls 

(Supplementary Methods 1.4 – 1.15). We used the resulting proximity matrices to

evaluate whether random forests could identify previously documented patterns 

of acoustic similarity for YNA at the site social scale (Wright 1996).

3.1.6 Training Model 1 Between Species

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465



As in our previous random forests analysis with MNK calls, we used both the 

ranger and randomForest implementations to build and train Model 1 per 

species. We used repeatedly sampled individuals and regional dialects for MNK 

and YNA model training, respectively. We trained MNK Model 1 using the same 

repeatedly sampled individuals as in our prior approach (73 calls across 4 

individuals or 75.3% of MNK calls at the individual scale). We trained YNA Model 

1 using 4 sites for each of the Northern and Southern regional dialects 

documented in northwestern Costa Rica in 1994 (Wright 1996). Each site had 23 

– 40 calls, for a total of 274 calls, or 65.7% of the YNA calls. We iterated over 

mtry values and total number of trees as before.

3.1.7 Model 1 Training Performance Between Implementations

We found that ranger again outperformed randomForest in training classification 

accuracy. Variable importance metrics differed between the implementations. 

These differences in model training performance and variable importance held 

across species. We decided to proceed with the ranger implementation, as in our

prior random forests modeling approach. 

3.1.8 Building and Training Model 2

We built Model 2 by manually selecting the most important features from Model 1

using the mean importance of built-in random variables as a threshold. We 
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trained Model 2 on the same calls from repeatedly sampled individuals or 

regional dialects used for Model 1 training.

3.1.9 Model 2 Training Performance

We compared performance and variable importance metrics across the best 

performing model per species. We found that Model 2 per species yielded high 

classification accuracy during training (> 95%). 

3.1.10 Model 2 Validation Performance

We proceeded with model validation with Model 2 per species (Supplementary 

Table 3). We did not perform model validation for MNK and YNA Model 1, as 

these models had lower training performance. The YNA validation data set was 

composed of 36 calls from 3 sites representing 2 dialects (2 Northern and 1 

Southern (Wright 1996). Each site had 10 – 16 calls from 1 – 2 individuals. We 

extracted random forests proximity matrices per validation data set and 

performed model-based clustering. We restricting the clustering algorithm to the 

true number of clusters present in the validation data set, which served to assess

the biological relevance of our models. Model-based clustering for MNK exhibited

91.7% classification accuracy with validation calls, with only 2 misclassified calls 

(Supplementary Table 3). The YNA model yielded 100% classification accuracy 

by random forests (this was possible to assess because the training and 

validation data sets contained the same class labels, e.g. Northern and Southern 
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dialects), and 100% classification accuracy by model-based clustering 

(Supplementary Table 3). 

Supplementary Table 3: Random Forests Model Training and Validation 

Performance For Analysis with Yellow-Naped Amazons

Species Model
Implem

entation

Training

Labels

Final

Number

of Trees

mtry

Training

Accuracy

(%)

Validation

Accuracy (%) by

Model-based

Clustering

MNK 1

ranger Individuals 2500 88 96.71 -

rf Individuals 2000 230 70.68 -

2 ranger Individuals 2500 58 97.53 91.7

YNA

1
ranger Dialects 2000 65 98.47 -

rf Dialects 2500 382 92.92 -

2 ranger Dialects 2000 2 98.98 100

We validated our random forests approach by measuring acoustic similarity for 

yellow-naped amazons (YNA) at the site scale. Monk parakeets are abbreviated 

as MNK. Models 1 and 2 per species correspond to the full set of features or 

manually selected features, respectively. The final number of trees corresponds 
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to the number of decision trees grown for each forest, and mtry is the number of 

variables randomly selected at each split per tree. We report the training 

accuracy as the percentage of correctly classified calls. For validation accuracy, 

we report the percentage of correctly classified calls by model-based clustering 

on the resulting proximity matrix. Models that we used for predicting acoustic 

similarity at the site social scale per species are shown in bold.

3.1.11 Predicting Random Forests Acoustic Similarity at the Site Scale with 

Model 2 and Comparison with SPCC Acoustic Similarity

We chose ranger Model 2 per species to predict acoustic similarity at the site 

scale (MNK: nCalls = 598, nSites= 39, nIndividuals = 598, and YNA: nCalls = 86, nDialects= 2, 

nSites= 3, nIndividuals = 13). As in model validation, we assessed patterns of acoustic 

similarity between species by performing model-based clustering on the random 

forests proximity matrices. Here, we restricted the clustering algorithm to the true 

number of clusters per dataset. We also performed model-based clustering on 

SPCC matrices between species in the same way. We compared clustering 

patterns arising from SPCC and random forests acoustic similarity 

(Supplementary Figure 3), as well as the ratio of within-site compared to among-

site acoustic similarity between species (Supplementary Figure 4). 
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Supplementary Figure 3: Model-based clustering on SPCC and random forests 
similarity matrices at the site scale for monk parakeets (MNK) and yellow-naped 
amazons (YNA). We used MNK calls for higher social scales (nCalls = nIndividuals = 
598, nSites = 39). We used 86 total calls for YNA (nIndividuals = 10, nSites = 3, nDialects = 
2). We reduced dimensionality using t-SNE. Site identity was poorly 
reconstructed for MNK by both SPCC and RF, supporting the fact that acoustic 
similarity within sites was low. Both SPCC and RF identified previously 
documented patterns of high acoustic similarity within sites for YNA (Wright 
1996). The YNA data set included a Nicaraguan dialect site (circles), which was 
more distant in acoustic space relative to the Northern dialect sites (triangles, 
squares) (Wright 1996).
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Supplementary Figure 4: Acoustic similarity at the individual and site social 
scales for monk parakeets (MNK) and yellow-naped amazons (YNA). We used 
the same calls from random forests prediction of site scale similarity as shown in 
Supplementary Figure 3. Acoustic similarity is represented as the ratio of within 
versus among sites for both SPCC and random forests. The dashed line at 1 
represents acoustic similarity within sites equal to acoustic similarity among sites.
Both SPCC and random forests reconstructed the previously documented pattern
of high acoustic similarity within sites for YNA (Wright 1996).
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3.1.12 Random Forests is a Valuable Acoustic Similarity Method

Supervised random forests yielded highly accurate patterns of acoustic similarity 

for MNK and YNA. SPCC and random forests reconstructed the sharp 

boundaries of acoustic similarity previously found at the site social scale for YNA 

(Supplementary Figures 3, 4) (Wright 1996). Moreover, SPCC and random 

forests identified the mosaic pattern that is characteristic of dialects for yellow-

naped amazons (first reported using SPCC) (Wright 1996). Both SPCC and 

random forests identified low acoustic similarity among Nicaraguan and Northern 

dialect sites, as evidenced by greater separation in acoustic space between 

these two dialects (Supplementary Figure 3). Neither SPCC nor random forests 

reconstructed discrete clustering by sites for MNK (Supplementary Figure 3). The

fact that we reconstructed previously identified patterns of acoustic similarity for 

YNA supports the robustness of our analytical approach and findings with MNK.

3.1.13 Image Features Were Useful Measurements of Acoustic Structure

Our random forests models relied on spectrogram image features, which are not 

frequently used for analyzing animal acoustic signals (Shamir et al. 2014). 

Random forests consistently ranked image features among the most important 

variables across final models trained for MNK and YNA, suggesting spectrogram 

image features would be useful in future research (Supplementary Figure 5). 

Although variable importance of different feature types varied across species, 

image features were frequently represented among the top 40 important 
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variables per model. SPCC, multiDTW, and Mel-frequency cepstral features were

also highly ranked in models across species, suggesting these parameters would

also be of interest for future analyses (Supplementary Figure 5). 
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Supplementary Figure 5: Acoustic and image features represented in the top 40 
most important variables during Model 2 training for monk parakeets (MNK) and 
yellow-naped amazons (YNA). Feature type abbreviations: Cepstral coefficients 
= Mel-frequency cepstral coefficients, SPCC = spectrographic cross-correlation, 
Dominant Frequency DTW = DTW on dominant frequency time series, Spectral 
Entropy DTW = DTW on spectral entropy time series, Multivariate DTW = 
multivariate DTW on dominant frequency and spectral entropy time series, 
Acoustic parameters = parameters measured across the three domains of sound 
using the function specan in the warbleR package, Image processing = 
spectrogram image processing parameters. Models relied most heavily on 
SPCC, Mel-frequency cepstral coefficients, multivariate DTW and spectrogram 
image features.
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3.2 Inter-Observer Reliability of Visual Inspection

We based our quantitative approaches of measuring acoustic similarity on 

preliminary results from visual inspection by a single observer. We found patterns

of relatively high consistency within individuals and distinctiveness among 

individuals, suggesting that identities of repeatedly sampled individuals could 

serve as reliable labels for random forests classification (Supplementary Methods

1.1). Here, we validated these preliminary findings with visual inspection by 

asking how reliably multiple observers classified calls at the individual scale. We 

used results from the Shiny app designed to collect visual classification results 

across multiple observers (Supplementary Methods 1.2).

We performed an analysis of inter-observer reliability using calls classified 

at the individual scale by 12 observers (4 calls from each of 4 individual birds). At

this social scale, classes generally contained a majority of calls from a single 

individual, such that it was possible to assign each individual to a different class 

and find how many calls had been misclassified across observers. The mean 

classification accuracy across observers was 71.82% +/- 15.94% (mean +/- SD). 

This relatively high classification accuracy confirmed that monk parakeet 

individuals produce consistent and distinctive calls, and that these patterns of 

acoustic similarity can be reliably identified by visual inspection. 

3.3 Comparison of Visual Inspection, SPCC and Random Forests as Methods of 

Measuring Contact Call Similarity
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3.3.1 Obtaining Classification Accuracy Across Social Scales and Similarity 

Methods

We compared our three similarity methods to validate our overall analytical 

approach to measuring similarity of monk parakeet contact calls, which exhibit 

complex acoustic structure. Two of these methods, visual inspection and SPCC, 

have traditionally been used to assess similarity of learned acoustic signals 

(Nowicki and Nelson 1990; Farabaugh et al. 1992; Wright 1996; Guerra et al. 

2008). Random forests has been used less frequently to assess similarity of 

avian acoustic signals (Keen et al. 2014; Humphries et al. 2018), and has not yet 

been reported as a method to assess acoustic similarity of parrot acoustic 

signals. 

We began this analysis by converting classifications obtained by visual 

inspection via our Shiny app (Supplementary Methods 1.2) to quantitative 

measurements of visual similarity, which facilitated a direct comparison among 

similarity methods. Classifications varied considerably over higher social scales 

and observers. Classes often did not contain a majority of spectrograms 

belonging to a single social group. As such, it was often not possible to assign a 

social group to each class for higher social scales (e.g. Site X to Class A and Site

Y to Class B). In turn, we could not calculate classification accuracy by 

evaluating how many calls had been assigned to the “wrong class” per social 

group. We turned to a matrix-based approach. We converted classifications per 
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each of the 12 observers into pairwise binary matrices, in which 1 represented 

two calls classified together and 0 represented two calls assigned to different 

classes. We added matrices across observers to obtain a single matrix that 

encoded the total number of times that pairs of calls had been classified together 

or apart. We scaled this matrix to a range of 0 – 1 to yield a matrix representative

of visual similarity, and repeated this process across social scales. We subset the

SPCC and random forests acoustic similarity matrices by the same calls used 

across social scales for visual inspection in the Shiny app. We converted the 

visual and acoustic similarity matrices to distance matrices by subtracting them 

from 1. 

We used model-based clustering as a classification approach to assess 

how well social group identity could be reconstructed across social scales using 

each similarity measurement. We restricted clustering algorithms to 4 clusters, 

which was the true number of social groups presented at each social scale to 

observers. We then reduced the dimensionality of the acoustic distance matrices 

to 2 dimensions using t-SNE, which facilitated visualization of calls in two-

dimensional acoustic space (Supplementary Figure 6). We calculated the 

percentage of incorrectly classified calls per social group within each social scale

to evaluate how well calls were classified across social scales per similarity 

method (Supplementary Figure 6).
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Supplementary Figure 6: A comparison of our three complementary similarity 
methods. We used model-based clustering to compare how well similarity 
methods identified patterns of acoustic similarity relative to social group 
membership. Similarity methods are displayed in columns and social scales are 
shown in rows. We used t-SNE for dimensionality reduction. Filled and non-filled 
symbols correspond to the true group to which each call belongs across social 
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scales. Colored circles inside group symbols correspond to the clustering 
assignment of each call. Text in each panel corresponds to the percentage of 
correctly classified calls per visual or acoustic similarity method and social scale. 
Note that the number of incorrectly classified calls generally increases with social
scales across methods, with the exception of visual inspection at the site scale 
(see Supplementary Methods 3.3.2 for more information).

3.3.2 Classification Accuracy Generally Decreased Over Social Scales using 

Visual Inspection, SPCC and Random Forests as Similarity Methods

Classification accuracy was high at the individual scale across similarity methods

(87.5%, Supplementary Figure 6). These results indicated that the patterns of 

individual consistency and distinctiveness we used to inform our random forests 

approach were not an artifact of visual inspection by a single observer 

(Supplementary Figure 6). Classification accuracy decreased notably across 

higher social scales, with the exception of visual inspection (Supplementary 

Figure 6). Visual inspection and random forests outperformed SPCC acoustic 

similarity at the site social scale (87.5% and 68.75% versus 43.75% classification

accuracy, respectively, Supplementary Figure 6). Interestingly, visual inspection 

yielded classification accuracy at the site scale that was as high as the individual 

scale, indicating that visual inspection could identify the weak patterns of 

acoustic convergence present at the site scale. However, we feel that this pattern

of high classification accuracy yielded by visual similarity is in part due to the 

small number of social groups used for visual inspection. Given our preliminary 

visual inspection results (Supplementary Methods 1.1), classification accuracy 

would likely decrease significantly if observers were prompted to classify calls 

back to more social groups at this social scale.

669
670
671
672
673
674
675
676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694



3.4 Evaluating Differences in Social Context Between the Individual and Higher 

Social Scales

3.4.1 Implementation of a Permutation Test to Assess the Effect of Social 

Context on Acoustic Convergence

Repeatedly sampled individuals were often recorded while perched in isolation 

from social companions. At higher social scales, we often recorded calls from 

birds flying with a social group. For instance, at the site scale, we recorded calls 

from individuals flying in pairs (181 calls or 29.92% of the full data set for the site 

social scale), although we also recorded some individuals flying alone (47 calls or

7.77% of the full data set). This difference in sampling between the individual and

higher social scales was primarily a difference in social context (vocalizing alone 

versus in a social group). It was possible that such differences in social context 

could have skewed our results. We did not expect other behavioral contexts (e.g.

food deprivation, predator avoidance, courting) to affect sampling at one social 

scale more than any other scale. We reasoned that in general, in a social 

context, individuals might either converge more or less on calls with social group 

members, compared to calling alone. If so, then individuals sampled for the site 

scale while flying in a group would produce calls either more similar or more 

different to other birds sampled at the same site, compared to individuals 

sampled while flying alone. 
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We evaluated this possibility with a permutation test using SPCC acoustic 

distance. We obtained acoustic distances by subtracting SPCC values from 1. 

We identified sites at which we had sampled birds flying alone and birds flying in 

social groups at the site social scale. We performed permutation tests per site 

using inter-individual SPCC distances. We obtained inter-individual SPCC 

distances for each lone individual between all other individuals sampled at the 

same site. We also obtained inter-individual SPCC distances for each individual 

sampled in a social context between all other individuals sampled at the same 

site. We obtained the absolute value of the difference in mean SPCC distance 

between these two groups, which served as the observed acoustic distance 

between social contexts. We then combined these SPCC distances for 

permutation. We randomly sampled the combined SPCC distances without 

replacement, using the number of SPCC distances for the lone social context for 

the given site as the sample size. We calculated the absolute value of the mean 

SPCC distance between the permuted values extracted for each social context. 

We repeated this process over 1000 iterations. We calculated p-values as the 

number of times the permuted difference was greater or less than the observed 

difference, divided by the number of iterations. These p-values allowed us to 

assess whether or not the permuted difference in means was greater or less than

the observed difference in means between social contexts. We also calculated 

the effect size for the observed difference in SPCC mean distances between 

social contexts and the 95% CI of this effect size (Supplementary Table 4). We 
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used the effsize package version 0.7.4 (Torchiano 2018) to calculate Cohen’s d 

statistic, using pooled standard deviation between groups and Hedge’s g 

correction to account for bias by such pooling.

We performed a separate permutation test for site 1145, where we had 

repeatedly sampled 5 individuals for the individual scale (including 4 unmarked 

birds perched in isolation from social group members), as well as birds flying in 

social groups for the site social scale. We repeated the permutation test as 

above, albeit with a few differences. We obtained inter-individual SPCC distances

for individuals repeatedly sampled at site 1145 at the individual social scale. We 

excluded SPCC distances among an individual’s own calls (e.g. intra-individual 

SPCC distances). We obtained inter-individual SPCC distances for individuals 

sampled in a social context at the site scale. We used the number of SPCC 

distances for individuals sampled in a social context at site 1145 to randomly 

sample acoustic distances in the permutation test. We combined the results of 

this permutation test (also run with 1000 iterations) with those from the 

permutation test above. We evaluated the significance of p-values after adjusting

alpha of 0.05 using Bonferroni’s correction for multiple testing (adjusted alpha = 

0.0012, Supplementary Table 5).
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Supplementary Table 4: Assessing the Effect of Social Context on Acoustic 

Convergence

Site
Sample

Size
p_Higher p_Lower Effect Size   95% CI 

ARAZ 28 0.183 0.817 0.33 (-0.08, 0.74)

CHAC 11 0.328 0.672 -0.37 (-1.04, 0.29)

CISN 135 0.069 0.931 0.20 (0.01, 0.39)

ELTE 66 0.594 0.406 0.09 (-0.18, 0.35)

FAGR 18 0.256 0.744 -0.29 (-0.92, 0.35)

GOLF 105 0.000 1.000 0.60 (0.30, 0.89)

INES-03 14 0.295 0.705 0.39 (-0.16, 0.94)

INES-04 16 0.445 0.555 0.23 (-0.34, 0.81)

INES-07 8 0.786 0.214 0.10 (-0.8, 1.00)

INES-08 26 0.342 0.658 0.25 (-0.14, 0.65)

KIYU 14 0.290 0.710 -0.36 (-1.00, 0.28)

LENA 72 0.000 1.000 -0.58 (-0.87, -0.30)

OJOS 44 0.155 0.845 -0.28 (-0.61, 0.05)

PAVO 96 0.000 1.000 -0.39 (-0.65, -0.13)

PEIX 18 0.049 0.951 0.64 (0.15, 1.13)

PFER-01 33 0.368 0.632 0.21 (-0.16, 0.57)

PIED 60 0.002 0.998 0.49 (0.20, 0.78)

QUEB 45 0.308 0.692 -0.19 (-0.54, 0.16)

ROSA 14 0.285 0.715 0.39 (-0.16, 0.94)

VALI 22 0.867 0.133 -0.05 (-0.51, 0.42)

1145 60 0.029 0.971 0.40 (0.15, 0.66)

A permutation-based test of the effect of social context on acoustic convergence. 

P-values represent the likelihood that the difference in mean permuted inter-

individual SPCC distances was higher or lower than the observed difference in 

mean inter-individual SPCC distances between lone and social contexts. 
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Significant p-values are in bold, evaluated after adjusting alpha of 0.05 with 

Bonferroni’s correction (adjusted alpha = 0.0012). We calculated the effect size 

and 95% CI for the observed difference in mean SPCC distance between the 

lone and social contexts per site (Cohen’s d statistic with Hedges’ correction).

Supplementary Table 5: Effect Sizes for Acoustic Convergence at the Individual 

Scale in Contact Calls

Repeatedly Sampled

Individual

Effect Size  of Observed

Difference
95% CI of Effect Size

AAT 2.51 (2.23, 2.79)

BIRD 1 2.10 (1.91, 2.20)

BIRD 2 0.98 (0.84, 1.12)

BIRD 3 4.29 (3.59, 4.99)

BIRD 4 0.75 (0.51, 0.98)

Effect sizes and 95% CI for the difference in mean SPCC distance within 

compared to among repeatedly sampled individuals at site 1145 (intra-individual 

versus inter-individual SPCC distance). This represented the strength of acoustic

convergence at the individual scale (e.g. individual signatures). We calculated 

effect sizes using Cohen’s d statistic and Hedge’s correction. These effect sizes 

were used as a baseline for judging the strength of the effect of social context on 

acoustic convergence (Supplementary Table 4). Although some sites displayed a 

statistically significant effect of social context on acoustic convergence 
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(Supplementary Table 4), the effect sizes we report here are larger than those for

the effect of social context on acoustic convergence. 

3.4.2 Differences in Social Context Between the Individual and Higher Social 

Scales Were Unlikely to Bias Acoustic Convergence Results

Of the 21 sites used for the permutation test, we found that only 3 sites (GOLF, 

LENA, PAVO) demonstrated a significant difference in SPCC distances between 

social contexts (individuals sampled while flying alone versus individuals 

sampled while flying in a social group). These effect sizes varied in direction: at 

GOLF, individuals sampled in a lone context produced slightly more different calls

relative to other calls at the same site, while at LENA and PAVO, individuals 

sampled in a lone context produced slightly more similar calls relative to other 

calls at the same site. Importantly, we did not find a significant difference in mean

SPCC distance among calls of repeatedly sampled individuals and individuals 

sampled in a social context for the site scale at site 1145. 

We assessed the strength of the effect of social context on acoustic 

convergence. We calculated the effect size and 95% CI of the difference in mean

SPCC distances within compared to among repeatedly sampled individuals at 

site 1145 (e.g. the effect size of individual signatures or acoustic convergence at 

the individual scale), to serve as a baseline for evaluating the magnitude of effect

sizes reported between the lone and social contexts (Supplementary Table 5). 

We calculated effect sizes using the same procedure as above. Overall, the 
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mean effect size we found for the observed difference in mean SPCC distance 

within compared to among repeatedly sampled individuals (2.12 +/- 1.42) was 

about 4 times greater than effect sizes corresponding to the statistically 

significant differences in SPCC distance we identified between lone and social 

contexts at sites GOLF, LENA and PAVO (0.52 +/- 0.12, mean and SD calculated

from absolute values, Supplementary Tables 4, 5). Our results indicate that 

differences in social context while sampling across social scales were unlikely to 

bias the acoustic convergence results we present in this study. 

 

3.5 Accounting for Differences in Motivational Context Among Calls Recorded for

the Individual Scale

Calls for repeated individuals were recorded in narrow windows of time within a 

single day per individual. We recorded calls from Unmarked Bird 1 over 8.50 

minutes, Unmarked Bird 5 over 3.40 minutes and marked bird AAT over 5.74 

minutes, respectively. All other repeatedly sampled individuals were recorded 

over a single day, and typically within a 2 hour window. At times, we followed 

marked individuals for up to 5 hours but did not successfully record calls. 

Individuals could have experienced differences in motivational context that could 

have affected call structure similarity over these narrow sampling windows. 

We assessed whether acoustic similarity of calls for repeatedly sampled 

individuals was influenced by their position within the full temporal sequence of 

calls. Although we did not always have exact times per recording, so as to link 
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together call sequences across recordings, we had selected contact calls 

sequentially within and across recordings per individual. Therefore, we assigned 

calls per individual sequential integer values representing their position in call 

sequences. We converted the SPCC acoustic similarity matrix for repeatedly 

sampled individuals to a distance matrix by subtracting values from 1. We subset

this SPCC distance matrix to retain calls for each individual. We then generated 

a distance matrix of temporal sequence distance per individual, and performed 

Mantel tests to ask whether temporal sequence distance was significantly 

correlated with acoustic distance. For individuals with more calls, we used 9999 

permutations, although for individuals with fewer calls, permutations were limited 

to the maximum number of permutations possible (Supplementary Table 6). We 

adjusted alpha of 0.05 to 0.0062 using a Bonferroni correction to account for 

multiple testing. We found no significant relationship between acoustic distance 

and the position of calls within call sequences per individual (Supplementary 

Table 6). 

We repeated this analysis for 4 unmarked individuals with call sequences 

contained in a single recording. We calculated the exact temporal distance 

among calls per individual using start and end times within recordings, and used 

these for a Mantel test as described above. We again found no significant 

influence of temporal distance among calls and pairwise SPCC similarity 

measurements. Here we used unmarked birds 2 – 5. The strongest Mantel r and 

p-value (UM3, Mantel r = 0.57, p = 0.0750, nCalls = 5) was not significant at an 
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alpha of 0.0125 (adjusted by Bonferroni correction, see supplementary code for 

all test statistics and p-values). Overall, these results suggest that differences in 

motivational context during our narrow sampling windows did not significantly 

influence the results we present here at the individual scale.

Supplementary Table 6: Assessing Differences in Motivational Context Among 

Calls Recorded for the Individual Scale

Repeatedly

Sampled

Individual

Number of

Calls
Mantel r Mantel p Permutations

RAW 4 -0.14 0.5833 23

ZW8 8 -0.04 0.5525 9999

AAT 12 0.05 0.3491 9999

BIRD 1 25 0.14 0.0407 9999

BIRD 2 23 0.09 0.0813 9999

BIRD 3 5 0.7 0.0500 119

BIRD 4 13 -0.24 0.9747 9999

BIRD 5 7 -0.31 0.9151 5039

Mantel test results indicate no significant correlation between SPCC acoustic 

distance among calls for each repeatedly sampled individual and the position of 

each call within temporal call sequences. Alpha was adjusted from 0.05 to 0.0062

using a Bonferroni correction to account for multiple testing. Mantel permutations 

were limited for individuals with fewer calls.
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4. Additional R Packages Used for Data Management, Visualization and Analysis

We relied on additional R packages across our analyses: corrplot (Wei and 

Simko 2017), data.table (Dowle and Srinivasan 2018), dplyr (Wickham et al. 

2018), dtw (Giorgino 2009), e1071 (Meyer et al. 2017), edarf (Jones and Linder 

2017), facetscales (Oller Moreno 2018), forcats (Wickham 2018), ggplot2 

(Wickham 2016a), gtable (Wickham 2016b), lattice (Sarkar 2008), magrittr 

(Bache and Wickham 2014), MLmetrics (Yan 2016), pbapply (Solymos and 

Zawadzki 2018), shadowtext (Yu 2017), shinyjs (Attali 2018), shinythemes 

(Chang 2018), shinyWidgets (Perrier et al. 2019) and tidyverse (Wickham 2017).
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